

Industry best practices.Repository Design

Pattern, Model View Controller design

pattern, Kendo Controls, Version Control

System, and Entity Framework

Prepared, written and edited by Jinan Kordab

In repository design pattern, Unit Of Work, which is responsible for

database Insert, Update, and Delete operations, updates, (including

delete) and inserts records into tables of database of your choice using

Transactional Approach, meaning either all transaction commits, or if

something happens, the whole transaction rolls back, and no table is

affected. For example, you have three tables. Table A, table B, and table

C. Table C has two foreign keys from table A and B. In other words, we

have one to many relationships, A to C, and another one to many

relationship from B to C. I want to add a new (for the sake of simplicity

for this example) record in A , and another record into C.

With regular database operations, I would do this:

1-InsertAndCommitToA();

2-InsertAndCommitToC();

And thus, we will have one record in A and another related record in C.

The fact of the matter, is that those are two separate sole, with time

difference, encapsulated operations. Each one of them has a beginning,

and an end:

1-Begin, End

2-Begin, End

By using UnitOfWork in repository model, which in its turn (

UnitOfWork), one can extend its functionality to an interface, adding

additional functionality , those two operations listed above are

performed AS IF it is one operation, and if something goes wrong, all

operation rolls back, and no change is commited to the database.

Ex:

tableA.Add(record);

tableC.Add(record);

UnitOfWork.Save();

This approach helps us prevent having inconsistent records in some of

our tables in database.

Another thing worth mentioning here, is that when only updating a

record in a database, and to avoid duplication of records, check if the

changed record exists in ALL OTHER rows in a table, EXCLUDING the

row that is being edited. This minor details is rarely noticed, because not

much unit testing is done to all parts of an application, generally

speaking, concerning the speed of returned records, which is in

milliseconds. But the difference, is very much noticed with slow internet

connection.

Since we are still on the topic of databases, lets consider entity

framework as well, a little bit. We have a DataModel, and in case of

Telerik's DataModel, it is represented with .rlinq extension. This

datamodel has many useful operations, where with two clicks of a

mouse, you can update all your model drom database, as well as the

other way around, update databse from your model. One of your team

mates adds tables to the database. Best practice is to update the model

from the database, and not get latest from your solutions's source

control, after your team mate checks in his latest updates and commits,

because each DataModel has application and environment specific and

independent settings that would be overriden, if one gets latest (in some

cases), especially with table mappings. To summarize, it is always best

practice to update your data .rlinq Model from database directly.

Another best practice concerning databases, is related to same

information that is needed to be present, and related to each single

entity in a database, such as dateCreated, dateInserted,

nameOfPersonWhoInserted. Never add those fields to ALL database

tables ! Because it will break normalization rules for the tables, and it

will increase the size of the database very much ! Best practice is to

create a separate group of related tables, normalized, that will store all

this information.

As for Kendo UI ASP.NET MVC Razor controls, and especially with

Kendo Grid Control, best practice is to make sure one has defined and

passed the ID or primary key of your model in (Model, View,

Controller) to the Kendo Grid, as it does not find and bind

automatically.

Another best practice to mention, is when all the needed data is passed

to Kendo Grid, including complex data types, and not only primitive

arrays, when passing the data to Edit or Add Action Result in Controller

to perform some operations on, all data should and must be

SERIALIZED ! It can be done using JavaScript.

Thank you,

Jinan Kordab

Programmer

http://appearoo.com/jinankordab

http://jinankordab.gear.host/

softuniversum.com

